Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter.

نویسندگان

  • Jiahe Xi
  • Pablo Lamata
  • Jack Lee
  • Philippe Moireau
  • Dominique Chapelle
  • Nic Smith
چکیده

Parameter estimation from non-invasive measurements is a crucial step in patient-specific cardiac modeling. It also has the potential to provide significant assistance in the clinical diagnosis of cardiac diseases through the quantification of myocardial material heterogeneity. In this paper, we formulate a novel Reduced-order Unscented Kalman Filter (rUKF) applied to the left ventricular (LV) nonlinear mechanical model based on cubic-Hermite finite elements. Material parameters in the widely-employed transversely isotropic Guccione's constitutive law are successfully identified for both homogeneous and heterogeneous cases. We conclude that the four parameters in Guccione's law can be uniquely and correctly determined in-silico from noisy displacement measurements of material points located on the myocardial surfaces. The future application of this novel and effective approach to real clinical measurements is thus promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2011